Copied to
clipboard

G = C5×C322Q8order 360 = 23·32·5

Direct product of C5 and C322Q8

direct product, metabelian, supersoluble, monomial

Aliases: C5×C322Q8, C155Dic6, C30.39D6, (C3×C15)⋊7Q8, C10.17S32, C322(C5×Q8), C6.5(S3×C10), C31(C5×Dic6), Dic3.(C5×S3), C3⋊Dic3.2C10, (C5×Dic3).2S3, (C3×C30).31C22, (C3×Dic3).1C10, (Dic3×C15).3C2, C2.5(C5×S32), (C3×C6).5(C2×C10), (C5×C3⋊Dic3).5C2, SmallGroup(360,76)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C5×C322Q8
C1C3C32C3×C6C3×C30Dic3×C15 — C5×C322Q8
C32C3×C6 — C5×C322Q8
C1C10

Generators and relations for C5×C322Q8
 G = < a,b,c,d,e | a5=b3=c3=d4=1, e2=d2, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=b-1, be=eb, cd=dc, ece-1=c-1, ede-1=d-1 >

Subgroups: 132 in 54 conjugacy classes, 28 normal (12 characteristic)
C1, C2, C3, C3, C4, C5, C6, C6, Q8, C32, C10, Dic3, Dic3, C12, C15, C15, C3×C6, C20, Dic6, C30, C30, C3×Dic3, C3⋊Dic3, C5×Q8, C3×C15, C5×Dic3, C5×Dic3, C60, C322Q8, C3×C30, C5×Dic6, Dic3×C15, C5×C3⋊Dic3, C5×C322Q8
Quotients: C1, C2, C22, C5, S3, Q8, C10, D6, C2×C10, Dic6, C5×S3, S32, C5×Q8, S3×C10, C322Q8, C5×Dic6, C5×S32, C5×C322Q8

Smallest permutation representation of C5×C322Q8
On 120 points
Generators in S120
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)
(1 33 39)(2 34 40)(3 35 36)(4 31 37)(5 32 38)(6 20 13)(7 16 14)(8 17 15)(9 18 11)(10 19 12)(21 118 111)(22 119 112)(23 120 113)(24 116 114)(25 117 115)(26 47 41)(27 48 42)(28 49 43)(29 50 44)(30 46 45)(51 79 58)(52 80 59)(53 76 60)(54 77 56)(55 78 57)(61 74 67)(62 75 68)(63 71 69)(64 72 70)(65 73 66)(81 88 109)(82 89 110)(83 90 106)(84 86 107)(85 87 108)(91 97 104)(92 98 105)(93 99 101)(94 100 102)(95 96 103)
(1 33 39)(2 34 40)(3 35 36)(4 31 37)(5 32 38)(6 20 13)(7 16 14)(8 17 15)(9 18 11)(10 19 12)(21 118 111)(22 119 112)(23 120 113)(24 116 114)(25 117 115)(26 47 41)(27 48 42)(28 49 43)(29 50 44)(30 46 45)(51 58 79)(52 59 80)(53 60 76)(54 56 77)(55 57 78)(61 67 74)(62 68 75)(63 69 71)(64 70 72)(65 66 73)(81 109 88)(82 110 89)(83 106 90)(84 107 86)(85 108 87)(91 104 97)(92 105 98)(93 101 99)(94 102 100)(95 103 96)
(1 56 26 71)(2 57 27 72)(3 58 28 73)(4 59 29 74)(5 60 30 75)(6 109 21 95)(7 110 22 91)(8 106 23 92)(9 107 24 93)(10 108 25 94)(11 84 114 99)(12 85 115 100)(13 81 111 96)(14 82 112 97)(15 83 113 98)(16 89 119 104)(17 90 120 105)(18 86 116 101)(19 87 117 102)(20 88 118 103)(31 80 50 61)(32 76 46 62)(33 77 47 63)(34 78 48 64)(35 79 49 65)(36 51 43 66)(37 52 44 67)(38 53 45 68)(39 54 41 69)(40 55 42 70)
(1 86 26 101)(2 87 27 102)(3 88 28 103)(4 89 29 104)(5 90 30 105)(6 65 21 79)(7 61 22 80)(8 62 23 76)(9 63 24 77)(10 64 25 78)(11 69 114 54)(12 70 115 55)(13 66 111 51)(14 67 112 52)(15 68 113 53)(16 74 119 59)(17 75 120 60)(18 71 116 56)(19 72 117 57)(20 73 118 58)(31 110 50 91)(32 106 46 92)(33 107 47 93)(34 108 48 94)(35 109 49 95)(36 81 43 96)(37 82 44 97)(38 83 45 98)(39 84 41 99)(40 85 42 100)

G:=sub<Sym(120)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (1,33,39)(2,34,40)(3,35,36)(4,31,37)(5,32,38)(6,20,13)(7,16,14)(8,17,15)(9,18,11)(10,19,12)(21,118,111)(22,119,112)(23,120,113)(24,116,114)(25,117,115)(26,47,41)(27,48,42)(28,49,43)(29,50,44)(30,46,45)(51,79,58)(52,80,59)(53,76,60)(54,77,56)(55,78,57)(61,74,67)(62,75,68)(63,71,69)(64,72,70)(65,73,66)(81,88,109)(82,89,110)(83,90,106)(84,86,107)(85,87,108)(91,97,104)(92,98,105)(93,99,101)(94,100,102)(95,96,103), (1,33,39)(2,34,40)(3,35,36)(4,31,37)(5,32,38)(6,20,13)(7,16,14)(8,17,15)(9,18,11)(10,19,12)(21,118,111)(22,119,112)(23,120,113)(24,116,114)(25,117,115)(26,47,41)(27,48,42)(28,49,43)(29,50,44)(30,46,45)(51,58,79)(52,59,80)(53,60,76)(54,56,77)(55,57,78)(61,67,74)(62,68,75)(63,69,71)(64,70,72)(65,66,73)(81,109,88)(82,110,89)(83,106,90)(84,107,86)(85,108,87)(91,104,97)(92,105,98)(93,101,99)(94,102,100)(95,103,96), (1,56,26,71)(2,57,27,72)(3,58,28,73)(4,59,29,74)(5,60,30,75)(6,109,21,95)(7,110,22,91)(8,106,23,92)(9,107,24,93)(10,108,25,94)(11,84,114,99)(12,85,115,100)(13,81,111,96)(14,82,112,97)(15,83,113,98)(16,89,119,104)(17,90,120,105)(18,86,116,101)(19,87,117,102)(20,88,118,103)(31,80,50,61)(32,76,46,62)(33,77,47,63)(34,78,48,64)(35,79,49,65)(36,51,43,66)(37,52,44,67)(38,53,45,68)(39,54,41,69)(40,55,42,70), (1,86,26,101)(2,87,27,102)(3,88,28,103)(4,89,29,104)(5,90,30,105)(6,65,21,79)(7,61,22,80)(8,62,23,76)(9,63,24,77)(10,64,25,78)(11,69,114,54)(12,70,115,55)(13,66,111,51)(14,67,112,52)(15,68,113,53)(16,74,119,59)(17,75,120,60)(18,71,116,56)(19,72,117,57)(20,73,118,58)(31,110,50,91)(32,106,46,92)(33,107,47,93)(34,108,48,94)(35,109,49,95)(36,81,43,96)(37,82,44,97)(38,83,45,98)(39,84,41,99)(40,85,42,100)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (1,33,39)(2,34,40)(3,35,36)(4,31,37)(5,32,38)(6,20,13)(7,16,14)(8,17,15)(9,18,11)(10,19,12)(21,118,111)(22,119,112)(23,120,113)(24,116,114)(25,117,115)(26,47,41)(27,48,42)(28,49,43)(29,50,44)(30,46,45)(51,79,58)(52,80,59)(53,76,60)(54,77,56)(55,78,57)(61,74,67)(62,75,68)(63,71,69)(64,72,70)(65,73,66)(81,88,109)(82,89,110)(83,90,106)(84,86,107)(85,87,108)(91,97,104)(92,98,105)(93,99,101)(94,100,102)(95,96,103), (1,33,39)(2,34,40)(3,35,36)(4,31,37)(5,32,38)(6,20,13)(7,16,14)(8,17,15)(9,18,11)(10,19,12)(21,118,111)(22,119,112)(23,120,113)(24,116,114)(25,117,115)(26,47,41)(27,48,42)(28,49,43)(29,50,44)(30,46,45)(51,58,79)(52,59,80)(53,60,76)(54,56,77)(55,57,78)(61,67,74)(62,68,75)(63,69,71)(64,70,72)(65,66,73)(81,109,88)(82,110,89)(83,106,90)(84,107,86)(85,108,87)(91,104,97)(92,105,98)(93,101,99)(94,102,100)(95,103,96), (1,56,26,71)(2,57,27,72)(3,58,28,73)(4,59,29,74)(5,60,30,75)(6,109,21,95)(7,110,22,91)(8,106,23,92)(9,107,24,93)(10,108,25,94)(11,84,114,99)(12,85,115,100)(13,81,111,96)(14,82,112,97)(15,83,113,98)(16,89,119,104)(17,90,120,105)(18,86,116,101)(19,87,117,102)(20,88,118,103)(31,80,50,61)(32,76,46,62)(33,77,47,63)(34,78,48,64)(35,79,49,65)(36,51,43,66)(37,52,44,67)(38,53,45,68)(39,54,41,69)(40,55,42,70), (1,86,26,101)(2,87,27,102)(3,88,28,103)(4,89,29,104)(5,90,30,105)(6,65,21,79)(7,61,22,80)(8,62,23,76)(9,63,24,77)(10,64,25,78)(11,69,114,54)(12,70,115,55)(13,66,111,51)(14,67,112,52)(15,68,113,53)(16,74,119,59)(17,75,120,60)(18,71,116,56)(19,72,117,57)(20,73,118,58)(31,110,50,91)(32,106,46,92)(33,107,47,93)(34,108,48,94)(35,109,49,95)(36,81,43,96)(37,82,44,97)(38,83,45,98)(39,84,41,99)(40,85,42,100) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120)], [(1,33,39),(2,34,40),(3,35,36),(4,31,37),(5,32,38),(6,20,13),(7,16,14),(8,17,15),(9,18,11),(10,19,12),(21,118,111),(22,119,112),(23,120,113),(24,116,114),(25,117,115),(26,47,41),(27,48,42),(28,49,43),(29,50,44),(30,46,45),(51,79,58),(52,80,59),(53,76,60),(54,77,56),(55,78,57),(61,74,67),(62,75,68),(63,71,69),(64,72,70),(65,73,66),(81,88,109),(82,89,110),(83,90,106),(84,86,107),(85,87,108),(91,97,104),(92,98,105),(93,99,101),(94,100,102),(95,96,103)], [(1,33,39),(2,34,40),(3,35,36),(4,31,37),(5,32,38),(6,20,13),(7,16,14),(8,17,15),(9,18,11),(10,19,12),(21,118,111),(22,119,112),(23,120,113),(24,116,114),(25,117,115),(26,47,41),(27,48,42),(28,49,43),(29,50,44),(30,46,45),(51,58,79),(52,59,80),(53,60,76),(54,56,77),(55,57,78),(61,67,74),(62,68,75),(63,69,71),(64,70,72),(65,66,73),(81,109,88),(82,110,89),(83,106,90),(84,107,86),(85,108,87),(91,104,97),(92,105,98),(93,101,99),(94,102,100),(95,103,96)], [(1,56,26,71),(2,57,27,72),(3,58,28,73),(4,59,29,74),(5,60,30,75),(6,109,21,95),(7,110,22,91),(8,106,23,92),(9,107,24,93),(10,108,25,94),(11,84,114,99),(12,85,115,100),(13,81,111,96),(14,82,112,97),(15,83,113,98),(16,89,119,104),(17,90,120,105),(18,86,116,101),(19,87,117,102),(20,88,118,103),(31,80,50,61),(32,76,46,62),(33,77,47,63),(34,78,48,64),(35,79,49,65),(36,51,43,66),(37,52,44,67),(38,53,45,68),(39,54,41,69),(40,55,42,70)], [(1,86,26,101),(2,87,27,102),(3,88,28,103),(4,89,29,104),(5,90,30,105),(6,65,21,79),(7,61,22,80),(8,62,23,76),(9,63,24,77),(10,64,25,78),(11,69,114,54),(12,70,115,55),(13,66,111,51),(14,67,112,52),(15,68,113,53),(16,74,119,59),(17,75,120,60),(18,71,116,56),(19,72,117,57),(20,73,118,58),(31,110,50,91),(32,106,46,92),(33,107,47,93),(34,108,48,94),(35,109,49,95),(36,81,43,96),(37,82,44,97),(38,83,45,98),(39,84,41,99),(40,85,42,100)]])

75 conjugacy classes

class 1  2 3A3B3C4A4B4C5A5B5C5D6A6B6C10A10B10C10D12A12B12C12D15A···15H15I15J15K15L20A···20H20I20J20K20L30A···30H30I30J30K30L60A···60P
order123334445555666101010101212121215···151515151520···202020202030···303030303060···60
size1122466181111224111166662···244446···6181818182···244446···6

75 irreducible representations

dim111111222222224444
type++++-+-+-
imageC1C2C2C5C10C10S3Q8D6Dic6C5×S3C5×Q8S3×C10C5×Dic6S32C322Q8C5×S32C5×C322Q8
kernelC5×C322Q8Dic3×C15C5×C3⋊Dic3C322Q8C3×Dic3C3⋊Dic3C5×Dic3C3×C15C30C15Dic3C32C6C3C10C5C2C1
# reps1214842124848161144

Matrix representation of C5×C322Q8 in GL6(𝔽61)

100000
010000
0058000
0005800
000010
000001
,
100000
010000
001000
000100
000001
00006060
,
100000
010000
00606000
001000
000010
000001
,
53330000
3580000
0060000
0006000
000010
00006060
,
2730000
21340000
001000
00606000
000010
000001

G:=sub<GL(6,GF(61))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,58,0,0,0,0,0,0,58,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,0,0,0,0,1,60],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,60,1,0,0,0,0,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[53,35,0,0,0,0,33,8,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,1,60,0,0,0,0,0,60],[27,21,0,0,0,0,3,34,0,0,0,0,0,0,1,60,0,0,0,0,0,60,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C5×C322Q8 in GAP, Magma, Sage, TeX

C_5\times C_3^2\rtimes_2Q_8
% in TeX

G:=Group("C5xC3^2:2Q8");
// GroupNames label

G:=SmallGroup(360,76);
// by ID

G=gap.SmallGroup(360,76);
# by ID

G:=PCGroup([6,-2,-2,-5,-2,-3,-3,120,265,127,1210,8645]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^3=c^3=d^4=1,e^2=d^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b^-1,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽