direct product, metabelian, supersoluble, monomial
Aliases: C5×C32⋊2Q8, C15⋊5Dic6, C30.39D6, (C3×C15)⋊7Q8, C10.17S32, C32⋊2(C5×Q8), C6.5(S3×C10), C3⋊1(C5×Dic6), Dic3.(C5×S3), C3⋊Dic3.2C10, (C5×Dic3).2S3, (C3×C30).31C22, (C3×Dic3).1C10, (Dic3×C15).3C2, C2.5(C5×S32), (C3×C6).5(C2×C10), (C5×C3⋊Dic3).5C2, SmallGroup(360,76)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C5×C32⋊2Q8
G = < a,b,c,d,e | a5=b3=c3=d4=1, e2=d2, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=b-1, be=eb, cd=dc, ece-1=c-1, ede-1=d-1 >
Subgroups: 132 in 54 conjugacy classes, 28 normal (12 characteristic)
C1, C2, C3, C3, C4, C5, C6, C6, Q8, C32, C10, Dic3, Dic3, C12, C15, C15, C3×C6, C20, Dic6, C30, C30, C3×Dic3, C3⋊Dic3, C5×Q8, C3×C15, C5×Dic3, C5×Dic3, C60, C32⋊2Q8, C3×C30, C5×Dic6, Dic3×C15, C5×C3⋊Dic3, C5×C32⋊2Q8
Quotients: C1, C2, C22, C5, S3, Q8, C10, D6, C2×C10, Dic6, C5×S3, S32, C5×Q8, S3×C10, C32⋊2Q8, C5×Dic6, C5×S32, C5×C32⋊2Q8
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)
(1 33 39)(2 34 40)(3 35 36)(4 31 37)(5 32 38)(6 20 13)(7 16 14)(8 17 15)(9 18 11)(10 19 12)(21 118 111)(22 119 112)(23 120 113)(24 116 114)(25 117 115)(26 47 41)(27 48 42)(28 49 43)(29 50 44)(30 46 45)(51 79 58)(52 80 59)(53 76 60)(54 77 56)(55 78 57)(61 74 67)(62 75 68)(63 71 69)(64 72 70)(65 73 66)(81 88 109)(82 89 110)(83 90 106)(84 86 107)(85 87 108)(91 97 104)(92 98 105)(93 99 101)(94 100 102)(95 96 103)
(1 33 39)(2 34 40)(3 35 36)(4 31 37)(5 32 38)(6 20 13)(7 16 14)(8 17 15)(9 18 11)(10 19 12)(21 118 111)(22 119 112)(23 120 113)(24 116 114)(25 117 115)(26 47 41)(27 48 42)(28 49 43)(29 50 44)(30 46 45)(51 58 79)(52 59 80)(53 60 76)(54 56 77)(55 57 78)(61 67 74)(62 68 75)(63 69 71)(64 70 72)(65 66 73)(81 109 88)(82 110 89)(83 106 90)(84 107 86)(85 108 87)(91 104 97)(92 105 98)(93 101 99)(94 102 100)(95 103 96)
(1 56 26 71)(2 57 27 72)(3 58 28 73)(4 59 29 74)(5 60 30 75)(6 109 21 95)(7 110 22 91)(8 106 23 92)(9 107 24 93)(10 108 25 94)(11 84 114 99)(12 85 115 100)(13 81 111 96)(14 82 112 97)(15 83 113 98)(16 89 119 104)(17 90 120 105)(18 86 116 101)(19 87 117 102)(20 88 118 103)(31 80 50 61)(32 76 46 62)(33 77 47 63)(34 78 48 64)(35 79 49 65)(36 51 43 66)(37 52 44 67)(38 53 45 68)(39 54 41 69)(40 55 42 70)
(1 86 26 101)(2 87 27 102)(3 88 28 103)(4 89 29 104)(5 90 30 105)(6 65 21 79)(7 61 22 80)(8 62 23 76)(9 63 24 77)(10 64 25 78)(11 69 114 54)(12 70 115 55)(13 66 111 51)(14 67 112 52)(15 68 113 53)(16 74 119 59)(17 75 120 60)(18 71 116 56)(19 72 117 57)(20 73 118 58)(31 110 50 91)(32 106 46 92)(33 107 47 93)(34 108 48 94)(35 109 49 95)(36 81 43 96)(37 82 44 97)(38 83 45 98)(39 84 41 99)(40 85 42 100)
G:=sub<Sym(120)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (1,33,39)(2,34,40)(3,35,36)(4,31,37)(5,32,38)(6,20,13)(7,16,14)(8,17,15)(9,18,11)(10,19,12)(21,118,111)(22,119,112)(23,120,113)(24,116,114)(25,117,115)(26,47,41)(27,48,42)(28,49,43)(29,50,44)(30,46,45)(51,79,58)(52,80,59)(53,76,60)(54,77,56)(55,78,57)(61,74,67)(62,75,68)(63,71,69)(64,72,70)(65,73,66)(81,88,109)(82,89,110)(83,90,106)(84,86,107)(85,87,108)(91,97,104)(92,98,105)(93,99,101)(94,100,102)(95,96,103), (1,33,39)(2,34,40)(3,35,36)(4,31,37)(5,32,38)(6,20,13)(7,16,14)(8,17,15)(9,18,11)(10,19,12)(21,118,111)(22,119,112)(23,120,113)(24,116,114)(25,117,115)(26,47,41)(27,48,42)(28,49,43)(29,50,44)(30,46,45)(51,58,79)(52,59,80)(53,60,76)(54,56,77)(55,57,78)(61,67,74)(62,68,75)(63,69,71)(64,70,72)(65,66,73)(81,109,88)(82,110,89)(83,106,90)(84,107,86)(85,108,87)(91,104,97)(92,105,98)(93,101,99)(94,102,100)(95,103,96), (1,56,26,71)(2,57,27,72)(3,58,28,73)(4,59,29,74)(5,60,30,75)(6,109,21,95)(7,110,22,91)(8,106,23,92)(9,107,24,93)(10,108,25,94)(11,84,114,99)(12,85,115,100)(13,81,111,96)(14,82,112,97)(15,83,113,98)(16,89,119,104)(17,90,120,105)(18,86,116,101)(19,87,117,102)(20,88,118,103)(31,80,50,61)(32,76,46,62)(33,77,47,63)(34,78,48,64)(35,79,49,65)(36,51,43,66)(37,52,44,67)(38,53,45,68)(39,54,41,69)(40,55,42,70), (1,86,26,101)(2,87,27,102)(3,88,28,103)(4,89,29,104)(5,90,30,105)(6,65,21,79)(7,61,22,80)(8,62,23,76)(9,63,24,77)(10,64,25,78)(11,69,114,54)(12,70,115,55)(13,66,111,51)(14,67,112,52)(15,68,113,53)(16,74,119,59)(17,75,120,60)(18,71,116,56)(19,72,117,57)(20,73,118,58)(31,110,50,91)(32,106,46,92)(33,107,47,93)(34,108,48,94)(35,109,49,95)(36,81,43,96)(37,82,44,97)(38,83,45,98)(39,84,41,99)(40,85,42,100)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (1,33,39)(2,34,40)(3,35,36)(4,31,37)(5,32,38)(6,20,13)(7,16,14)(8,17,15)(9,18,11)(10,19,12)(21,118,111)(22,119,112)(23,120,113)(24,116,114)(25,117,115)(26,47,41)(27,48,42)(28,49,43)(29,50,44)(30,46,45)(51,79,58)(52,80,59)(53,76,60)(54,77,56)(55,78,57)(61,74,67)(62,75,68)(63,71,69)(64,72,70)(65,73,66)(81,88,109)(82,89,110)(83,90,106)(84,86,107)(85,87,108)(91,97,104)(92,98,105)(93,99,101)(94,100,102)(95,96,103), (1,33,39)(2,34,40)(3,35,36)(4,31,37)(5,32,38)(6,20,13)(7,16,14)(8,17,15)(9,18,11)(10,19,12)(21,118,111)(22,119,112)(23,120,113)(24,116,114)(25,117,115)(26,47,41)(27,48,42)(28,49,43)(29,50,44)(30,46,45)(51,58,79)(52,59,80)(53,60,76)(54,56,77)(55,57,78)(61,67,74)(62,68,75)(63,69,71)(64,70,72)(65,66,73)(81,109,88)(82,110,89)(83,106,90)(84,107,86)(85,108,87)(91,104,97)(92,105,98)(93,101,99)(94,102,100)(95,103,96), (1,56,26,71)(2,57,27,72)(3,58,28,73)(4,59,29,74)(5,60,30,75)(6,109,21,95)(7,110,22,91)(8,106,23,92)(9,107,24,93)(10,108,25,94)(11,84,114,99)(12,85,115,100)(13,81,111,96)(14,82,112,97)(15,83,113,98)(16,89,119,104)(17,90,120,105)(18,86,116,101)(19,87,117,102)(20,88,118,103)(31,80,50,61)(32,76,46,62)(33,77,47,63)(34,78,48,64)(35,79,49,65)(36,51,43,66)(37,52,44,67)(38,53,45,68)(39,54,41,69)(40,55,42,70), (1,86,26,101)(2,87,27,102)(3,88,28,103)(4,89,29,104)(5,90,30,105)(6,65,21,79)(7,61,22,80)(8,62,23,76)(9,63,24,77)(10,64,25,78)(11,69,114,54)(12,70,115,55)(13,66,111,51)(14,67,112,52)(15,68,113,53)(16,74,119,59)(17,75,120,60)(18,71,116,56)(19,72,117,57)(20,73,118,58)(31,110,50,91)(32,106,46,92)(33,107,47,93)(34,108,48,94)(35,109,49,95)(36,81,43,96)(37,82,44,97)(38,83,45,98)(39,84,41,99)(40,85,42,100) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120)], [(1,33,39),(2,34,40),(3,35,36),(4,31,37),(5,32,38),(6,20,13),(7,16,14),(8,17,15),(9,18,11),(10,19,12),(21,118,111),(22,119,112),(23,120,113),(24,116,114),(25,117,115),(26,47,41),(27,48,42),(28,49,43),(29,50,44),(30,46,45),(51,79,58),(52,80,59),(53,76,60),(54,77,56),(55,78,57),(61,74,67),(62,75,68),(63,71,69),(64,72,70),(65,73,66),(81,88,109),(82,89,110),(83,90,106),(84,86,107),(85,87,108),(91,97,104),(92,98,105),(93,99,101),(94,100,102),(95,96,103)], [(1,33,39),(2,34,40),(3,35,36),(4,31,37),(5,32,38),(6,20,13),(7,16,14),(8,17,15),(9,18,11),(10,19,12),(21,118,111),(22,119,112),(23,120,113),(24,116,114),(25,117,115),(26,47,41),(27,48,42),(28,49,43),(29,50,44),(30,46,45),(51,58,79),(52,59,80),(53,60,76),(54,56,77),(55,57,78),(61,67,74),(62,68,75),(63,69,71),(64,70,72),(65,66,73),(81,109,88),(82,110,89),(83,106,90),(84,107,86),(85,108,87),(91,104,97),(92,105,98),(93,101,99),(94,102,100),(95,103,96)], [(1,56,26,71),(2,57,27,72),(3,58,28,73),(4,59,29,74),(5,60,30,75),(6,109,21,95),(7,110,22,91),(8,106,23,92),(9,107,24,93),(10,108,25,94),(11,84,114,99),(12,85,115,100),(13,81,111,96),(14,82,112,97),(15,83,113,98),(16,89,119,104),(17,90,120,105),(18,86,116,101),(19,87,117,102),(20,88,118,103),(31,80,50,61),(32,76,46,62),(33,77,47,63),(34,78,48,64),(35,79,49,65),(36,51,43,66),(37,52,44,67),(38,53,45,68),(39,54,41,69),(40,55,42,70)], [(1,86,26,101),(2,87,27,102),(3,88,28,103),(4,89,29,104),(5,90,30,105),(6,65,21,79),(7,61,22,80),(8,62,23,76),(9,63,24,77),(10,64,25,78),(11,69,114,54),(12,70,115,55),(13,66,111,51),(14,67,112,52),(15,68,113,53),(16,74,119,59),(17,75,120,60),(18,71,116,56),(19,72,117,57),(20,73,118,58),(31,110,50,91),(32,106,46,92),(33,107,47,93),(34,108,48,94),(35,109,49,95),(36,81,43,96),(37,82,44,97),(38,83,45,98),(39,84,41,99),(40,85,42,100)]])
75 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 4A | 4B | 4C | 5A | 5B | 5C | 5D | 6A | 6B | 6C | 10A | 10B | 10C | 10D | 12A | 12B | 12C | 12D | 15A | ··· | 15H | 15I | 15J | 15K | 15L | 20A | ··· | 20H | 20I | 20J | 20K | 20L | 30A | ··· | 30H | 30I | 30J | 30K | 30L | 60A | ··· | 60P |
order | 1 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 12 | 12 | 12 | 12 | 15 | ··· | 15 | 15 | 15 | 15 | 15 | 20 | ··· | 20 | 20 | 20 | 20 | 20 | 30 | ··· | 30 | 30 | 30 | 30 | 30 | 60 | ··· | 60 |
size | 1 | 1 | 2 | 2 | 4 | 6 | 6 | 18 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 1 | 1 | 1 | 1 | 6 | 6 | 6 | 6 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 18 | 18 | 18 | 18 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 6 | ··· | 6 |
75 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | - | + | - | + | - | |||||||||
image | C1 | C2 | C2 | C5 | C10 | C10 | S3 | Q8 | D6 | Dic6 | C5×S3 | C5×Q8 | S3×C10 | C5×Dic6 | S32 | C32⋊2Q8 | C5×S32 | C5×C32⋊2Q8 |
kernel | C5×C32⋊2Q8 | Dic3×C15 | C5×C3⋊Dic3 | C32⋊2Q8 | C3×Dic3 | C3⋊Dic3 | C5×Dic3 | C3×C15 | C30 | C15 | Dic3 | C32 | C6 | C3 | C10 | C5 | C2 | C1 |
# reps | 1 | 2 | 1 | 4 | 8 | 4 | 2 | 1 | 2 | 4 | 8 | 4 | 8 | 16 | 1 | 1 | 4 | 4 |
Matrix representation of C5×C32⋊2Q8 ►in GL6(𝔽61)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 58 | 0 | 0 | 0 |
0 | 0 | 0 | 58 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 60 | 60 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 60 | 60 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
53 | 33 | 0 | 0 | 0 | 0 |
35 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 60 | 0 | 0 | 0 |
0 | 0 | 0 | 60 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 60 | 60 |
27 | 3 | 0 | 0 | 0 | 0 |
21 | 34 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 60 | 60 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(61))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,58,0,0,0,0,0,0,58,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,0,0,0,0,1,60],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,60,1,0,0,0,0,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[53,35,0,0,0,0,33,8,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,1,60,0,0,0,0,0,60],[27,21,0,0,0,0,3,34,0,0,0,0,0,0,1,60,0,0,0,0,0,60,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
C5×C32⋊2Q8 in GAP, Magma, Sage, TeX
C_5\times C_3^2\rtimes_2Q_8
% in TeX
G:=Group("C5xC3^2:2Q8");
// GroupNames label
G:=SmallGroup(360,76);
// by ID
G=gap.SmallGroup(360,76);
# by ID
G:=PCGroup([6,-2,-2,-5,-2,-3,-3,120,265,127,1210,8645]);
// Polycyclic
G:=Group<a,b,c,d,e|a^5=b^3=c^3=d^4=1,e^2=d^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b^-1,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^-1>;
// generators/relations